L'eau : Comment la détecter

Etude de cas : Comment détecter la pluie sur un pare-brise de voiture

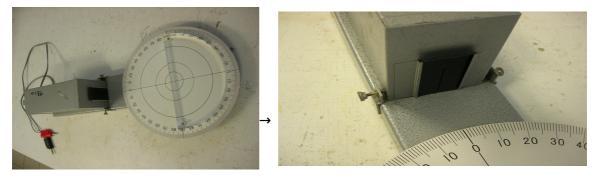
Merci à Bruno Milanetto (professeur au lycée Condorcet de Lens) pour la suggestion de cette idée et à Jean-Luc Trioux (préparateur au lycée Pasteur de Somain) pour la réalisation mécanique du projet.

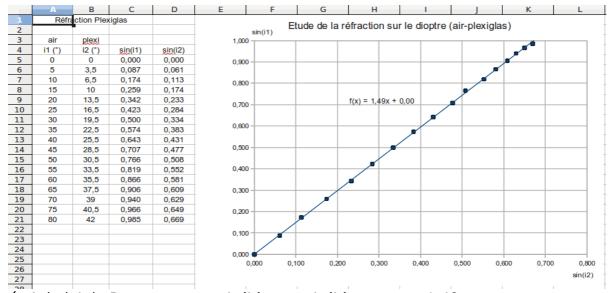
- 1- Observation d'un dispositif existant (Citroën Xsara Picasso)
- → Sur le parking du lycée :

Avec une pissette d'eau, on constate que les essuie-glaces se mettent en mouvement lorsque l'eau passe sur une zone spécifique du pare-brise.

Dans ce détecteur (situé **sous** le pare-brise) on observe des composants qui ressemblent à des Leds.

Conclusion : la détection se ferait de façon optique...mais on ne voit pas de lumière : cela pourrait-être de l'infrarouge


→ Retour en classe : on imagine comment pourrait être ce dispositif :


- on arrive à faire ressortir la notion de *réfraction*...

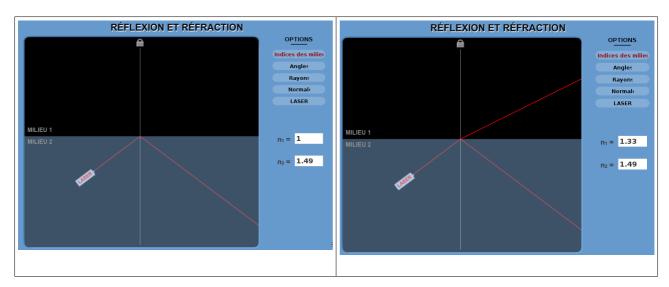
2- Etude de la réfraction sur le dioptre air-plexiglas :

→ Les élèves travaillent avec le matériel suivant non réglè. (On est en SL, à eux de régler convenablement le faisceau) :

Etude au tableur (conversions d'angles en radians ; calculs de sinus ; tracé de graphe ; courbe de tendance ; mise en forme)

on écrit la loi de Descartes : $n_1.\sin(i_1) = n_2.\sin(i_2)$ et $n_{plexi} = 1,49$

3- Etude de la réfraction sur le dioptre plexiglas-air :

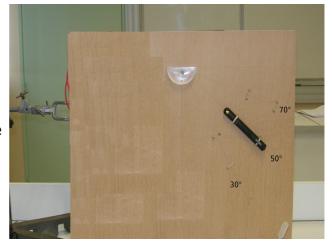

1	ı	1		1	1 1	1	1	1	1	ı
2					Eti	ude de la réfra	ction sur le d	diontre (nlevi	alas-air)	
3					sin(i1)	de de la lella	iction surie	aloptie (piexi	gias-aii j	
4	plexi	air			1,000					
5	i1 (°)	i2 (°)	sin(i1)	sin(i2)						
6	0	0	0,000	0,000	0,900					
7	5	9	0,087	0,156						
8	10	15,5	0,174	0,267	0,800					
9	15	22,5	0,259	0,383						
10	20	30,5	0,342	0,508	0,700					
11	25	39,5	0,423	0,636						•
12	30	48,5	0,500	0,749	0,600				_	
13	35	59	0,574	0,857	-,				•	
14	40	75	0,643	0,966	0,500					
15	42	90	0,669	1,000	0,300			_		
16	45	réflexion totale			0.400					
17	50	réflexion totale			0,400					
18	55	réflexion totale					•			
19	60	réflexion totale			0,300					
20	65	réflexion totale				٠ '	'			
21	70	réflexion totale			0,200					
22	75	réflexion totale								
23	80	réflexion totale			0,100					
24										sin(i2)
25					0,000					511(12)
26					0,000	0,200 0	,400 0,	600 0,	800 1,	000 1,2
27										

 \rightarrow On aura la réflexion totale sur le dioptre plexiglas-air pour un angle d'incidence supérieur à 42°

4- Modélisation du dioptre plexiglas-eau

animation Descartes d'Adrien Willm (www.ostralo.net):

- → Dans un premier temps on vérifie que le logiciel de simulation proposé fonctionne bien en comparant les résultats qu'il donne avec ceux que l'on a obtenus expérimentalement. On se replace bien sûr dans le cas de la séparation air-plexiglas.
- → Les résultats étant compatibles, on a <u>décidé de faire confiance au logiciel pour</u> <u>simuler le dioptre plexiglas-eau</u> qui n'est pas facile à réaliser expérimentalement :
- → trouver les limites de fonctionnement du dispositif pour avoir :
 - la réflexion totale lorsqu'il n'y a pas d'eau sur le plexiglas
 - la réfraction lorsqu'il y a de l'eau dessus.



On trouve alors que l'angle d'incidence doit être compris entre 42° et 60°.

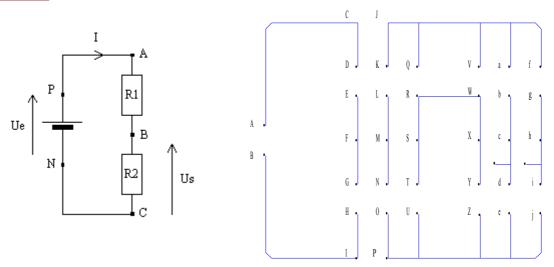
6- Réalisation du dispositif optique

Matériel par paillasse: le demi-cylindre du coffret d'optique; un stylo laser; une plaque de bois percée; des élastiques + des allumettes (à l'arrière de la plaque) pour fixer le stylo laser: cela permet de le déplacer facilement sur les trois directions notées. On peut maintenir le bouton-poussoir du laser enfoncé grâce aux élastiques.

Le faisceau doit être bien centré sur le milieu du demi-cylindre (tenu dans son trou avec de la patafix).

Une goutte d'eau est déposée sur le point d'impact du faisceau. On constate que l'angle 50° convient : réflexion totale sans eau et réfraction avec la goutte d'eau, ce qui est conforme aux prévisions).

Il faut maintenant détecter le faisceau laser


7- Etude d'une LDR

On constate à l'ohmmètre que ce composant a sa résistance qui varie avec la luminosité ; on observe le sens de cette variation

8- Réalisation du montage final

Le montage " Essuie-glace automatique "

<u>Transformer une valeur de résistance en une valeur de tension : le montage diviseur de tension :</u>

Réaliser le montage en prenant pour $R_1=4.7~k\Omega$ et pour $R_2=2.7~k\Omega$. Régler le générateur pour avoir une tension d'entrée $U_e=6.0~V$. Quel appareil de mesure faut-il ajouter pour pouvoir mesurer la tension de sortie U_s du diviseur de tension.

1- Prendre successivement pour R_2 les valeurs listées dans le tableau ci dessous et mesurer à chaque fois la valeur de la tension de sortie U_s du diviseur de tension :

R_2	2,7 kΩ	1 kΩ	680 Ω	220 Ω
U _s (V)				

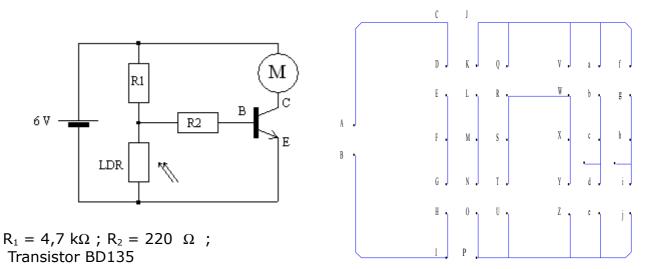
2- Que constate-t-on?

3- Une étude théorique du montage diviseur de tension montre que la tension de sortie a pour expression :

$$U_{s} = U_{e} \cdot \frac{R_{2}}{(R_{1} + R_{2})}$$

4- Vérifier cette relation sur l'une des quatre mesures réalisées :

5- Si on remplace la résistance R₂ par une LDR, que va faire la tension de sortie U_s lorsque l'intensité lumineuse qui arrive sur la LDR diminue ? Justifier la réponse.

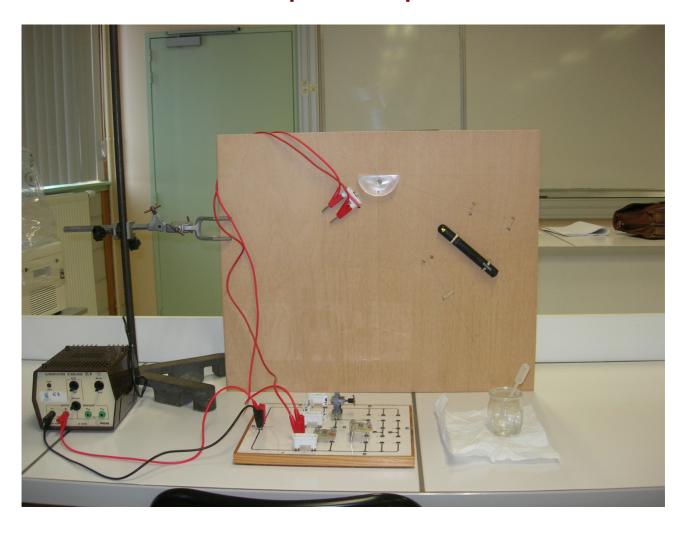

Remplacer R₂ par la LDR et vérifier votre hypothèse.

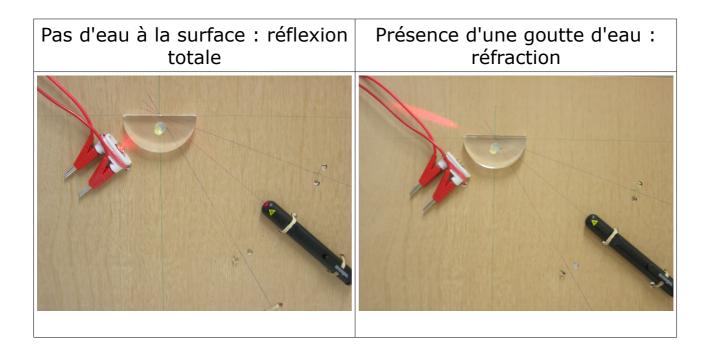
Activation du moteur : utilisation d'un transistor :

Le transistor : c'est comme un robinet !

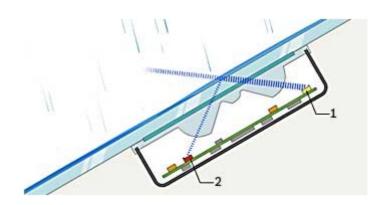
Robinet	Transistor		
B: le bouton C: la canalisation E: l'écoulement	B: la base C: le collecteur E: l'émetteur		
Une action sur le bouton B permet le passage de l'eau, de la canalisation vers l'écoulement. Plus on tourne le bouton et plus l'eau s'écoule	Une action sur la base B (passage d'un petit courant) permet le passage d'un courant important du collecteur vers l'émetteur. Plus l'action sur la base est grande et plus l'intensité du courant est grande		
Mais l'action sur le bouton doit être assez forte sinon le robinet ne s'ouvre pas	Mais l'action sur la base doit être suffisante pour que le courant passe de C vers E		
Une action trop importante ne sert à rien : quand l'ouverture est à son maximum, le débit n'augmente plus	Une action trop forte sur la base ne fait plus augmenter l'intensité du courant : le transistor est alors saturé		

Pour commander la mise en route ou l'arrêt du moteur, on pourra réaliser le montage suivant :




Que fait le moteur :

- quand le faisceau laser arrive sur la LDR :
- quand le faisceau laser n'arrive pas sur la LDR :


On passe ensuite à l'assemblage final du dispositif.

Le dispositif complet :

Un exemple de détecteur de pluie sur pare-brise (source : Bosch):

Le pointeur Laser utilisé :

Descriptif

• Modèle MP-1000 1 mW - Classe II

· Longueur d'onde : 650 nm

• Format "STYLO"

· Boîtier en ABS noir.

• Diamètre du faisceau : 8 mm à 5 m

Fourni avec 2 piles AAA (R3).

Dim. : Ø 18 x 138 mm
 Poids : 24 g (sans pile)

• Portée : 200 m.

Disponible chez Selectronic (<u>www.selectronic.fr</u>) : intérêt de ce modèle : il est alimenté par deux piles baton 1,5V format AAA (plus économiques que les piles bouton que l'on trouve dans beaucoup de pointeurs laser)